Safe Harbor Statement

Matters discussed in this presentation contain forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. When used in this press release, the words "anticipate," "believe," "estimate," "may," "intend," "expect" and similar expressions identify such forward-looking statements. Actual results, performance or achievements could differ materially from those contemplated, expressed or implied by the forward-looking statements contained herein, and while expected, there is no guarantee that we will attain the aforementioned anticipated developmental milestones. These forward-looking statements are based largely on the expectations of the Company and are subject to a number of risks and uncertainties. These include, but are not limited to, risks and uncertainties associated with: the impact of economic, competitive and other factors affecting the Company and its operations, markets, product, and distributor performance, the impact on the national and local economies resulting from terrorist actions, and U.S. actions subsequently; and other factors detailed in reports filed by the Company.
Recovering Oil: A Twofold Challenge

- Algae Grow Suspended in Large Amounts of Water
 - Cells have similar specific gravity to water
 - Algae in suspension neither sink nor float
 - Wet biomass retains interstitial water, which acts as a lubricant
 - Harvesting oil requires solids separation
 - Dewatering is energy and capital intensive

- Cell Walls are Difficult to “Crack”
 - Algae have a tough exterior to protect internal lipids
 - Cell wall has a high elasticity modulus
 - Cell rupture through mechanical friction and steam explosion requires dry biomass
 - Mechanical extraction is energy and capital intensive
 - Chemical extraction requires caustic solvents
Conventional Approach

Current State of the Art is a 3-Stage Process:

1. **Solids Separation**
 - Options Include:
 - Polymer Flocculation
 - Decanters/Centrifuges
 - Hydrocyclones

2. **Dewatering**
 - Options Include:
 - Steam Drying
 - Fluid Bed
 - Microwave

3. **Extraction**
 - Options Include:
 - Expellers/Presses
 - Solvent Extraction
 - Supercritical CO₂

Conventional Systems Feature a Combination of Technologies
Solids Separation: Polymer Flocculation

- Solute particles form biomass aggregate called “floc”
- Two main types of flocculants
 - Inorganic Flocculants
 - Organic Polymer/Polyelectrolyte Flocculants
- Microalgae can form stable suspensions
- Advantages:
 - Capable of treating large quantities of culture
 - Applicable to wide range of algae strains
 - Less energy intensive than mechanical separation
- Limitations:
 - Flocculants can be expensive and caustic
 - Flocculation alone is not sufficient
 - Typically combined with other processes
Solids Separation: Decanters/Centrifuges

- Mechanical approach to solids separation
 - Decanters are typically used in the ethanol industry
 - Centrifuges are widely used in the algae industry
- Operates using the sedimentation principle
- Requires specific gravity differential
- Advantages
 - Seen as the most efficient recovery technique
 - Capable of processing large algae cultures
 - Appropriate for cultures that are more liquid and less solid
- Limitations
 - Capital and energy intensive
 - Requires additional drying for mechanical and chemical extraction
Solids Separation: Hydrocyclones

- Uses gravity to separate solids from liquids
- Requires specific gravity differential
- Hydrocyclone dimensions must be precision engineered

Advantages
- Low capital costs

Limitations
- Only appropriate for select algae strains (e.g. Coelastrum)
- Efficiency is highly dependent on solids concentration
- Process is energy intensive
- Requires additional drying for mechanical and chemical extraction
- Reliability is questionable
Dewatering: Indirect/Direct Heat

- Heat is used to evaporate water
- Indirect heating uses rotating disks to accelerate heat exchange
- Direct heat uses open flame to create steam

Advantages
- Very effective as reducing moisture content
- Appropriate for applications with significant “waste heat”

Limitations
- Capital and energy intensive
- Direct heat has combustion risks
- Regular maintenance required
Dewatering: Fluid Bed

- Designed to dry biomass as it floats on a cushion of air
- Uses rotating screen that allows air to percolate through wet biomass

Advantages
- Effective at reducing moisture content of biomass
- Does not require steam or heat
- Relatively low maintenance costs

Limitations
- Typically used when moisture content is relatively low
- Capital and energy intensive
Dewatering: Microwave

- Process uses volumetric heating to achieve even distribution
- Energy is delivered electromagnetically, rather than as heat

Advantages
- Drying time can be reduced significantly
- Reduced risk of combustion
- Lower energy cost compared to steam drying
- Low maintenance costs

Limitations
- Potential of uneven drying
- Capital and energy intensive
Extraction: Expellers/Presses

- Uses mechanical force to rupture algae cells
- Widely used in oil extraction from various feedstock
- Design must be tailored to algae strain

Advantages
- No chemical input required
- Appropriate for high oil content algae
- Capable of extracting up to 80% oil

Limitations
- Residual biomass remains with pressed oil
- Typically requires additional solvent extraction
- Capital and energy intensive
- High maintenance costs
Extraction: Solvents

- Chemicals including benzene, ether and hexane are used to degrade cell walls
- Oil dissolves into solvent and is recovered through distillation
- Can be used in conjunction with mechanical extraction

Advantages
- Relatively inexpensive
- Effective at releasing up to 95% oil

Limitations
- Requires the use of caustic chemicals
- Hexane requires two year permitting process (U.S.)
Extraction: Supercritical CO$_2$

- Process uses liquid CO$_2$ at high temperature and high pressure to extract algae oil
- CO$_2$ penetrates algae cells and causes them to rupture
- Widely used in various industries, including coffee

Advantages
- Low environmental impact
- High quality oil and biomass product

Limitations
- Works best when algae cells are partially ruptured
- Process is highly tuned and sensitive
- High pressure systems involve risk
- Capital and energy intensive
Other Approaches: Enzyme Extraction

- Uses enzymes to degrade cell walls
- Water acts as the solvent material
- Process makes fractionation of oil much easier

Advantages:
- Does not require dry cake for oil extraction
- Low environmental impact
- No caustic chemicals

Limitations:
- Costs are much higher than hexane extraction
Other Approaches: Ultrasonication

- Uses ultrasonic waves to create cavitation bubbles in a solvent material
- Bubbles collapse, resulting in shock waves that break down cell walls
- Can be used in conjunction with enzymatic extraction

Advantages:
- Does not require dry cake for oil extraction
- Low environmental impact
- No caustic chemicals

Limitations:
- Energy intensive
- Technology unproven at industrial scale
The OriginOil Difference

Conventional Approach

Solids Separation → Dewatering → Extraction

OriginOil Approach

Extraction → Solids Separation → Dewatering

Radical Shift vs. Incremental Gains
OriginOil Single-Step Extraction™

- In one step, Quantum Fracturing™ combines with electromagnetism and pH modification to break down cell walls.
- Algae oil rises to the top for skimming and refining, while the remaining biomass settles to the bottom for further processing as fuel and other valuable products.
Single-Step Extraction Process Details

CO₂ Injection
- Lowers pH to optimize electromagnetic delivery
- Chemically assists in cell degradation

Quantum Fracturing
- Creates fluid fracturing effect
- Mechanically distresses algae cells

Electromagnetic Field
- Highly tuned EMP ruptures algae cells
- Causes cells to release internal lipids

Additional Key Process Innovations
- Subject to imminent patent filings
Gravity Settling

- Single Step Extraction separates oil from biomass
- Processed culture is transferred to a gravity clarifier
 - Oil rises to the top
 - Biomass sinks to the bottom
- Oil is skimmed for downstream polishing
- Biomass is drained for further drying (if necessary)
- Water is recycled to the bioreactor or pond
Single Step Extraction Benefits

- No initial dewatering required
- Significant energy savings
- No caustic chemicals
- Tunable to a wide range of feedstock
- Small footprint
- Easy installation
- Applicable to all growth platforms
- Fast throughput – highly scalable
- Greatly-reduced Capital Expenditure

A BREAKTHROUGH TECHNOLOGY TO TRANSFORM ALGAE INTO OIL
Conventional vs. Single-Step Extraction™

<table>
<thead>
<tr>
<th>Extraction Method</th>
<th>Energy Cost of Oil Extraction ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Process</td>
<td>1.24</td>
</tr>
<tr>
<td>Single-Step Extraction™ (Dry Cake)</td>
<td>0.79</td>
</tr>
<tr>
<td>Single-Step Extraction™ (Biomass Slurry)</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Harvest Concentration: 1 gram/L dry weight

© OriginOil 2010
Live Extraction™

- Continuous ‘milking’ process works by stimulating the algae cells electrically.
- Algae oil is extracted continuously, algae remains alive.
- Combines with daily harvest for improved productivity, refreshed cell cultures.
- Does not use expensive consumables, not limited to one strain.
- Now being scaled up to OriginOil’s intermediate 200-gallon tank size.
OPTIMIZED ALGAE PRODUCTION SYSTEM

Nutrients

CO₂

O₂ exhaust

Livestock Feed Co-Products

Methane + CO₂

Stripping Column

Methane

Power generation (pictured), or conversion to gas & liquid fuels

Fuel Chemicals Health Products

CO₂ Recovery

CO₂

Make-up Water

Recovered Water

Quantum Fracturing™

Helix Bio Reactor™

Live Extraction™

Dynamic Control System

Water Recovery

Algae Slurry

Fertilizer or Feed

Lipids

Straight Vegetable Oil (SVO)

Gravity Clarifier

Algae Biomass

Extraction Tank

Quantum Fracturing

Single-Step Extraction™

Electromagnetic Pulsing

Daily Harvest

TITLE Optimized Algae Production System

AUTHOR OriginOil, Inc.
Next Steps

Single-Step Extraction:
- 28 January 2010, launched pilot scale lab system (3-5gpm)
- By mid-2010, will launch mobile algae extraction system (ALGAEMAX) – on-site demos to interested algae companies.
- Pursuing commercial pilot projects in 2H2010.
- Ongoing discussions with OEMs.

Live Extraction:
- Displayed bench scale system at 28 January event.
- Currently scaling up to 200-gallon tank system.
- Testing productivity singly and in tandem with daily harvest and Single-Step Extraction.
Path to an Algae Market

Development of an integrated network of global partners, including:

- Original Equipment Manufacturers (OEMs)
- Country and Regional Partners
- Device and Component Manufacturers
- Service and Maintenance Providers
- Customized Application Developers
THANK YOU!

QUESTIONS?

COMMENTS?

partners@originoil.com

(SEE FOLLOWING SLIDES FOR PROCESS COMPARISON DETAILS)
Conventional Energy Requirements

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifuge for 1 MGD sludge processing</td>
<td>1,059 kWh</td>
</tr>
<tr>
<td>Centrifuge for processing 10,000,000 L (2.64 MG)</td>
<td>2,798 kWh</td>
</tr>
<tr>
<td>Sludge solid content</td>
<td>27%</td>
</tr>
<tr>
<td>Sludge moisture content</td>
<td>73%</td>
</tr>
<tr>
<td>Total biomass in 10,000,000 L</td>
<td>10,000 kg</td>
</tr>
<tr>
<td>Total moisture (water) content</td>
<td>27,037 kg</td>
</tr>
<tr>
<td>Energy requirement for water evaporation</td>
<td>16,770 kWh</td>
</tr>
<tr>
<td>Total energy requirement for dewatering</td>
<td>19,568 kWh</td>
</tr>
<tr>
<td>Cost for dewatering 10,000,000 L of algae culture</td>
<td>1,370 $</td>
</tr>
<tr>
<td>Energy cost for oil extraction</td>
<td>1,113 $</td>
</tr>
<tr>
<td>Total energy cost of crude oil</td>
<td>2,483 $</td>
</tr>
<tr>
<td>Energy cost per kg of crude oil</td>
<td>1.24 $/kg</td>
</tr>
</tbody>
</table>

Harvest Concentration: 1 gram/L dry weight
OriginOil Energy Requirements (Sludge)

Case A - biomass product is bio-digestible sludge

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction energy for 10,000,000 L</td>
<td>5,625 kWh</td>
</tr>
<tr>
<td>Post-extraction dewatering of 10,000,000 L</td>
<td>179 kWh</td>
</tr>
<tr>
<td>Unit power cost</td>
<td>0.07 $/kWh</td>
</tr>
</tbody>
</table>

Cost for processing 10,000,000 L

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total oil content (assuming 20% yield)</td>
<td>2,000 kg</td>
</tr>
<tr>
<td>Energy cost per kg of crude oil</td>
<td>0.20 $/kg</td>
</tr>
</tbody>
</table>

16.4% percent of conventional process energy cost
Single-Step Extraction™ (Cake)

Case B - biomass product is dry (10%)

- Extraction energy for 10,000,000 L: 5,625 kWh
- Post-extraction dewatering of 10,000,000 L: 179 kWh
- Energy requirement for water evaporation: 16,770 kWh
- Unit power cost: 0.07 $/kWh

Cost for processing 10,000,000 L

- 1,580 $

Total oil content (assuming 20% yield)

- 2,000 kg

Energy cost per kg of crude oil

- 0.79 $/kg

63.6 percent of conventional process energy cost